Review For Exam 2

The directions for the exam are as follows:

"WRITE YOUR NAME CLEARLY. Do as many problems as you can for a maximal score of 100. Note that you must do at least 10 problems correctly to get 100. Write neatly and legibly in the space provided. SHOW YOUR WORK!"

- 1. In other words, the exam consists of 10 core problems and 3 extra-credit problems. If you wish, you can do all the 13 problems, but your score will only add up to 100 points. Partial credit will be given.
- 2. Focus on problems indicated in red.
- 3. Also remember that you are allowed to use a scientific calculator.

Section 2.3

- 1. Go over problems 1-30 on HW # 9 (1-5, 9-12, 15-16, 20-27)
- 2. Calculate the partial derivatives for the following functions:

(a)
$$f(x, y, z) = x^{y}$$
 [Hint: $x^{y} = e^{y \ln (x)}$]
(b) $f(x, y) = \sin (x \sin(y))$
(c) $f(x, y, z) = \sin (x \sin(y \sin(z)))$
(d) $f(x, y, z) = x^{y^{z}}$ [Hint: refer to part (a)]
(e) $f(x, y, z) = x^{y+z}$
(f) $f(x, y, z) = (x + y)^{z}$
(g) $f(x, y) = \sin (xy)$
(h) $f(x, y) = [\sin(xy)]^{\cos (3)}$

- 3. Find the partial derivatives of the following functions (where $g: \mathbb{R} \to \mathbb{R}$ is continuous):
 - (a) $f(x, y) = \int_{a}^{x+y} g$ [Hint: Use the fundamental theorem of calc.] (b) $f(x, y) = \int_{y}^{x} g$

(c)
$$f(x, y) = \int_{a}^{xy} g$$

(d) $f(x, y) = \int_{a}^{\int_{b}^{y} g} g$
4. If $f(x, y) = x^{x^{x^{x^{y}}}} + \ln(x) \left(\tan^{-1} \left(\tan^{-1} (\sin (\cos xy) - \ln (x + y)) \right) \right)$
find $\frac{\partial f}{\partial y}(1, y)$. [Hint: There is an easy way to do this.]

- 5. Find the partial derivatives of f in terms of the derivatives of $g, h: \mathbb{R} \to \mathbb{R}$. (a) f(x, y) = g(x)h(y)
 - (b) $f(x, y) = g(x)^{h(y)}$ (c) f(x, y) = g(x)(d) f(x, y) = g(y)(e) f(x, y) = g(x + y)
- 6. Given a function f: R² → R, what are the conditions for which the mixed partials D_{1,2}f(a, b) and D_{2,1}f(a, b) are equal at the point (a, b)? (i.e. what conditions on the mixed partials are enough to insure that ∂²f/∂x∂y (a, b) = ∂²f/∂y∂x (a, b)?)
- 7. (Possible Extra-Credit) Define $f: \mathbb{R}^2 \to \mathbb{R}$ by $f(x, y) = \begin{cases} xy \frac{x^2 - y^2}{x^2 + y^2} & (x, y) \neq (0, 0) \\ 0 & (x, y) = (0, 0) \end{cases}$
 - (a) Show that $\frac{\partial f}{\partial y}(x, 0) = x$ for all x and $\frac{\partial f}{\partial x}(0, y) = -y$ for all y.

(b) Show that
$$\frac{\partial^2 f}{\partial x \partial y}(0,0) \neq \frac{\partial^2 f}{\partial y \partial x}(0,0)$$

- 8. Explain the difference between our concept of derivative in single-variable calculus versus multi-variable calculus.
- 9. Let $f(x) = \sin(x)$. Calculate:

(a)
$$f'(\pi/2)$$

(b) $Df(\pi/2)$

10. Calculate the total derivative of f:

11. Find the total derivative of f (where $g: \mathbb{R} \to \mathbb{R}$ is continuous):

(a)
$$f(x, y) = \int_{a}^{x+y} g$$
 at the point (h, k) .
(b) $f(x, y) = \int_{a}^{xy} g$ at the point (h, k) .
(c) $f(x, y, z) = \int_{xy}^{\sin(x \sin(y \sin(z)))} g$

- 12. Let $f: \mathbb{R}^n \to \mathbb{R}^m$ be a linear map. What is the relationship between $Df(\vec{a})$ and f?
- 13. Use differential approximation to estimate $\sqrt{8.9} + \sqrt[3]{8.1}$
- 14. Find the equation of the tangent plane to the surface

(a)
$$z = x^2 + (x + 1)y^2$$
 at the point $(1, -2, 9)$

(b) z = 2x - 5y - 1 at the point (0, 1, -6)

- 15. Suppose that f(2,-5) = -1 and Df(2,-5)(x,y) = x + 4y. Estimate the value of f(2.1, -4.9).
- 16. (Possible Extra-Credit) Let $f: \mathbb{R} \to \mathbb{R}$ be a function. Show that f is differentiable at x = a (in the calc. I sense) if and only if there exists a linear function $T: \mathbb{R} \to \mathbb{R}$ such that $\lim_{x \to a} \frac{f(x) f(a) T(x-a)}{|x-a|} = 0$.
- 17. (**Possible Extra-Credit**) A function $f: \mathbb{R}^n \to \mathbb{R}^m$ is said to be differentiable at $\vec{x} = \vec{a}$ if there exists a linear function $T: \mathbb{R}^n \to \mathbb{R}^m$ such that $\lim_{\vec{x}\to\vec{a}} \frac{f(\vec{x})-f(\vec{a})-T(\vec{x}-\vec{a})}{||\vec{x}-\vec{a}||} = \vec{0}$. Show that if such *T* exists, then it must be unique. (Hence the notation $T = Df(\vec{a})$ is justified)
- 18. (Possible Extra-Credit) Show that if $f: \mathbb{R}^n \to \mathbb{R}^m$ is differentiable at $\vec{x} = \vec{a}$ then it must be continuous at $\vec{x} = \vec{a}$.
- 19. (Possible Extra-Credit) Show that if $f: \mathbb{R}^n \to \mathbb{R}$ is differentiable at $\vec{x} = \vec{a}$ then all the partial derivatives $\frac{\partial f}{\partial x_k}(\vec{a})$ (k = 1, 2, ..., n) exist and satisfy the equation $\frac{\partial f}{\partial x_k}(\vec{a}) = Df(\vec{a})(\vec{e_k})$.
- 20. (Possible Extra-Credit) The graph of the function $f(x, y) = 5 \sqrt{x^2 + y^2}$ is shown below:

Without doing any computations, do you think f is differentiable at (0, 0)? Use your geometric intuition.

21. (Possible Extra-Credit) The "Victorian cottage roof" is the graph of the function $f(x, y) = 1 - \min \{|x|, |y|\}$ is shown below:

(a) Using your geometric intuition or using the formula of f, compute $\frac{\partial f}{\partial x}(0,0)$ and $\frac{\partial f}{\partial y}(0,0)$.

(b) Using part (a) what would be your formula for Df(0,0)?

(c) According to your intuition, is f differentiable at (0,0)? Is the function obtained in part (b) the derivative of f at (0, 0)?

22. (Possible Extra-Credit) Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by $f(x, y) = \sqrt{|x||y|}$. Show that *f* is not differentiable at (0,0).

23. (**Possible Extra-Credit**) Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by

$$f(x,y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

(a) Is f continuous at (0,0)? Justify your answer.

(b) Is f differentiable at (0, 0)? Justify your answer.

24. (Possible Extra-Credit) Let $f: \mathbb{R}^n \to \mathbb{R}$ be a function such that $|f(\vec{x})| \le \|\vec{x}\|^2$. Show that f is differentiable at $\vec{0}$.

Section 2.4

- 1. Go over problems 1-20 on HW # 8 (1-5, 13-15, 17-20)
- 2. A **cycloid** is a curve that is traced by a point on a rolling circle that travels without slipping along the x-axis.

3. A **hypocycloid** is a curve traced by a point on a rolling circle of radius *r* that travels within another circle of radius *R* without slipping

Find a path function that traces this curve. Show your work.

4. An **epicycloid** is a curve traced by a point on a rolling circle of radius *r* that travels on the outside of another circle of radius *R* without slipping.

Find a path function that traces this curve. Show your work.

- 5. Let $p(t) = (t, \cos t, e^{2t})$.
 - (a) Compute p'(0)
 - **(b)** Compute Dp(0)

(c) If p(t) represents the position of a particle at time t, what is the physical interpretation of your calculations in (a) and in (b)?

6. Calculate the curvature.

(a)
$$r(t) = \left(\frac{1}{3}(1+t)^{3/2}, \frac{1}{3}(1-t)^{3/2}, \frac{t}{\sqrt{2}}\right)$$

(b) $r(t) = \left(\frac{4}{5}\cos t, 1-\sin t, -\frac{3}{5}\cos t\right)$
(c) $r(t) = (t, 3\cos t, 3\sin t)$
(d) $r(t) = (\sqrt{2}t, e^t, e^{-t})$
(e) $r(t) = \left(t, \frac{1}{2}t^2, t^2\right)$
(f) $r(t) = (\cos^3 t, \sin^3 t)$

Section 2.5

- 1. Go over problems 1-24 on HW # 10 (1-3, 6-9, 14-16, 18, 21-22, 24)
- 2. Let $p(r, \theta) = (r\cos \theta, r\sin \theta), f(x, y) = (x, x + y, x y), \text{ and } g(x, y, z) = xyz$. Compute $D(g \circ f \circ p)(1, \frac{\pi}{2})$.
- 3. (Possible Extra-Credit) Use chain rule to derive the expression for product rule. In particular, if $f, g : \mathbb{R}^n \to \mathbb{R}$ are differentiable at $\vec{a} \in \mathbb{R}^n$, then $D(fg)(\vec{a})(\vec{x}) = g(\vec{a})Df(\vec{a})(\vec{x}) + f(\vec{a})Dg(\vec{a})(\vec{x})$.
- 4. (**Possible Extra-Credit**) Use chain rule to derive the expression for quotient rule. In particular, if $f, g : \mathbb{R}^n \to \mathbb{R}$ are differentiable at $\vec{a} \in \mathbb{R}^n$ with $g(\vec{a}) \neq 0$, then $D(f/g)(\vec{a})(\vec{x}) = \frac{g(\vec{a})Df(\vec{a})(\vec{x}) f(\vec{a})Dg(\vec{a})(\vec{x})}{[g(\vec{a})]^2}$.

Section 2.6

1. Go over problems 1-16 on HW # 11 (1-3, 5-9, 12-14)

2. (Possible Extra-Credit) Let
$$f: \mathbb{R}^2 \to \mathbb{R}$$
 be given by

$$f(x, y) = \begin{cases} \frac{x^2 y}{x^2 + y^2} & (x, y) \neq (0, 0) \\ 0 & (x, y) = (0, 0) \end{cases}$$

(a) Is f continuous at (0, 0)?

(b) Do all the directional derivatives $D_{\vec{u}}f(0,0)$ exist at (0,0)?

(c) Is f differentiable at (0, 0)?

Justify all your assertions.